Biodiversity And Earth History Pdf

File Name: biodiversity and earth history .zip
Size: 1251Kb
Published: 20.03.2021

Although almost anyone with a bit of a biology and geology background will learn a lot about life on Earth, the text is replete with the scientific names of higher taxa, many of which will likely be obscure to all but specialists. Thus, the text, in general, is geared to the biologically and geologically literate. The image pages are vivid, well labeled, and arresting.

Biodiversity loss

Biodiversity is the foundation of ecosystem services to which human well-being is intimately linked. No feature of Earth is more complex, dynamic, and varied than the layer of living organisms that occupy its surfaces and its seas, and no feature is experiencing more dramatic change at the hands of humans than this extraordinary, singularly unique feature of Earth.

This layer of living organisms—the biosphere—through the collective metabolic activities of its innumerable plants, animals, and microbes physically and chemically unites the atmosphere, geosphere, and hydrosphere into one environmental system within which millions of species , including humans, have thrived. It follows that large-scale human influences over this biota have tremendous impacts on human well-being.

It also follows that the nature of these impacts, good or bad, is within the power of humans to influence CF2. Defining Biodiversity. It explicitly recognizes that every biota can be characterized by its taxonomic, ecological, and genetic diversity and that the way these dimensions of diversity vary over space and time is a key feature of biodiversity. Thus only a multidimensional assessment of biodiversity can provide insights into the relationship between changes in biodiversity and changes in ecosystem functioning and ecosystem services CF2.

Biodiversity includes all ecosystems—managed or unmanaged. Sometimes biodiversity is presumed to be a relevant feature of only unmanaged ecosystems , such as wildlands, nature preserves, or national parks. This is incorrect. Measuring Biodiversity : Species Richness and Indicators. In spite of many tools and data sources, biodiversity remains difficult to quantify precisely. But precise answers are seldom needed to devise an effective understanding of where biodiversity is, how it is changing over space and time, the drivers responsible for such change, the consequences of such change for ecosystem services and human well-being , and the response options available.

Even more important would be to estimate turnover of biodiversity, not just point estimates in space or time. Currently, it is not possible to do this with much accuracy because the data are lacking. Even for the taxonomic component of biodiversity, where information is the best, considerable uncertainty remains about the true extent and changes in taxonomic diversity C4. There are many measures of biodiversity ; species richness the number of species in a given area represents a single but important metric that is valuable as the common currency of the diversity of life—but it must be integrated with other metrics to fully capture biodiversity.

Because the multidimensionality of biodiversity poses formidable challenges to its measurement, a variety of surrogate or proxy measures are often used. These include the species richness of specific taxa, the number of distinct plant functional types such as grasses, forbs, bushes, or trees , or the diversity of distinct gene sequences in a sample of microbial DNA taken from the soil.

Species- or other taxon-based measures of biodiversity, however, rarely capture key attributes such as variability, function, quantity, and distribution—all of which provide insight into the roles of biodiversity. See Box 1. Ecological indicators are scientific constructs that use quantitative data to measure aspects of biodiversity , ecosystem condition, services, or drivers of change, but no single ecological indicator captures all the dimensions of biodiversity C2.

In a similar manner, economic indicators such as GDP are highly influential and well understood by decision-makers. Some environmental indicators, such as global mean temperature and atmospheric CO 2 concentrations, are becoming widely accepted as measures of anthropogenic effects on global climate. Ecological indicators are founded on much the same principles and therefore carry with them similar pros and cons C2. Box 1. Documenting spatial patterns in biodiversity is difficult because taxonomic, functional, trophic, genetic, and other dimensions of biodiversity have been relatively poorly quantified.

Even knowledge of taxonomic diversity , the best known dimension of biodiversity, is incomplete and strongly biased toward the species level, megafauna, temperate systems, and components used by people. See Figure 1. For these reasons, estimates of the total number of species on Earth range from 5 million to 30 million. Irrespective of actual global species richness, however, it is clear that the 1. More-complete biotic inventories are badly needed to correct for this deficiency C4.

While the data to hand are often insufficient to provide accurate pictures of the extent and distribution of all components of biodiversity , there are, nevertheless, many patterns and tools that decision-makers can use to derive useful approximations for both terrestrial and marine ecosystems. North-temperate regions often have usable data on spatial distributions of many taxa, and some groups such as birds, mammals, reptiles, plants, butterflies, and dragonflies are reasonably well documented globally.

Biogeographic principles such as gradients in species richness associated with latitude, temperature, salinity, and water depth or the use of indicators can supplement available biotic inventories. Global and sub-global maps of species richness, several of which are provided in the MA reports Current State and Trends and Scenarios , provide valuable pictures of the distribution of biodiversity C4 , S Most macroscopic organisms have small, often clustered geographical ranges, leading to centers of both high diversity and endemism, frequently concentrated in isolated or topographically variable regions islands, mountains, peninsulas.

Even among the larger and more mobile species, such as terrestrial vertebrates, more than one third of all species have ranges of less than 1, square kilometers. In contrast, local and regional diversity of microorganisms tends to be more similar to large-scale and global diversity because of their large population size, greater dispersal, larger range sizes, and lower levels of regional species clustering C4.

Biomes and biogeographic realms provide broad pictures of the distribution of functional diversity. Functional diversity the variety of different ecological functions in a community independent of its taxonomic diversity shows patterns of associations biota typical of wetlands, forests, grasslands, estuaries, and so forth with geography and climate known as biomes see Figure 1. These can be used to provide first-order approximations of both expected functional diversity as well as possible changes in the distribution of these associations should environmental conditions change.

Knowledge of patterns of biodiversity over time allow for only very approximate estimates of background rates of extinction or of how fast species have become extinct over geological time. Except for the last 1, years, global biodiversity has been relatively constant over most of human history, but the history of life is characterized by considerable change. The estimated magnitude of background rates of extinction is roughly 0.

Current rates of extinction are discussed in Key Question 3. A mismatch exists between the dynamics of changes in natural systems and human responses to those changes. This mismatch arises from the lags in ecological responses, the complex feedbacks between socioeconomic and ecological systems, and the difficulty of predicting thresholds.

Multiple impacts especially the addition of climate change to the mix of forcing functions can cause thresholds, or rapid and dramatic changes in ecosystem function even though the increase in environmental stress has been small and constant over time. Understanding such thresholds requires having long-term records, but such records are usually lacking or monitoring has been too infrequent, of the wrong periodicity, or too localized to provide the necessary data to analyze and predict threshold behavior C28 , S3.

Shifts to different regimes may cause rapid substantial changes in biodiversity , ecosystem services , and human well-being. Regime shifts have been commonly documented in pelagic systems due to thresholds related to temperature regimes and overexploitation C Some regime shifts are essentially irreversible, such as coral reef ecosystems that undergo sudden shifts from coral-dominated to algal-dominated reefs C The trigger for such phase shifts usually includes increased nutrient inputs leading to eutrophic conditions and removal of herbivorous fishes that maintain the balance between corals and algae.

Once the thresholds both an upper and a lower threshold for the two ecological processes of nutrient loading and herbivory are passed, the phase shift occurs quickly within months , and the resulting ecosystem—though stable—is less productive and less diverse. Consequently, human well-being is affected not only by reductions in food supply and decreased income from reef-related industries diving and snorkeling, aquarium fish collecting, and so on , but also by increased costs due to diminished ability of reefs to protect shorelines.

Algal reefs are more prone to being broken up in storm events, leading to shoreline erosion and seawater breaches of land C Introduced invasive species can act as a trigger for dramatic changes in ecosystem structure, function, and delivery of services. Biodiversity plays an important role in ecosystem functions that provide supporting, provisioning, regulating, and cultural services.

These services are essential for human well-being. However, at present there are few studies that link changes in biodiversity with changes in ecosystem functioning to changes in human well-being. Protecting the Catskill watersheds that provide drinking water for New York City is one case where safeguarding ecosystem services paid a dividend of several billion dollars. Further work that demonstrates the links between biodiversity, regulating and supporting services , and human well-being is needed to show this vital but often unappreciated value of biodiversity C4, C7, C Species composition matters as much or more than species richness when it comes to ecosystem services.

Ecosystem functioning, and hence ecosystem services, at any given moment in time is strongly influenced by the ecological characteristics of the most abundant species, not by the number of species. The relative importance of a species to ecosystem functioning is determined by its traits and its relative abundance. Thus conserving or restoring the composition of biological communities , rather than simply maximizing species numbers, is critical to maintaining ecosystem services C Local or functional extinction, or the reduction of populations to the point that they no longer contribute to ecosystem functioning, can have dramatic impacts on ecosystem services.

Local extinctions the loss of a species from a local area and functional extinctions the reduction of a species such that it no longer plays a significant role in ecosystem function have received little attention compared with global extinctions loss of all individuals of a species from its entire range.

Loss of ecosystem functions, and the services derived from them, however, occurs long before global extinction. Often, when the functioning of a local ecosystem has been pushed beyond a certain limit by direct or indirect biodiversity alterations, the ecosystem-service losses may persist for a very long time C Changes in biotic interactions among species—predation, parasitism, competition, and facilitation—can lead to disproportionately large, irreversible, and often negative alterations of ecosystem processes.

In addition to direct interactions, such as predation, parasitism, or facilitation, the maintenance of ecosystem processes depends on indirect interactions as well, such as a predator preying on a dominant competitor such that the dominant is suppressed, which permits subordinate species to coexist. Interactions with important consequences for ecosystem services include pollination; links between plants and soil communities , including mycorrhizal fungi and nitrogen-fixing microorganisms; links between plants and herbivores and seed dispersers; interactions involving organisms that modify habitat conditions beavers that build ponds, for instance, or tussock grasses that increase fire frequency ; and indirect interactions involving more than two species such as top predators, parasites, or pathogens that control herbivores and thus avoid overgrazing of plants or algal communities C Many changes in ecosystem services are brought about by the removal or introduction of organisms in ecosystems that disrupt biotic interactions or ecosystem processes.

Because the network of interactions among species and the network of linkages among ecosystem processes are complex, the impacts of either the removal of existing species or the introduction of new species are difficult to anticipate C See Table 1.

Table 1. As in terrestrial and aquatic communities , the loss of individual species involved in key interactions in marine ecosystems can also influence ecosystem processes and the provisioning of ecological services. For example, coral reefs and the ecosystem services they provide are directly dependent on the maintenance of some key interactions between animals and algae.

As one of the most species-rich communities on Earth, coral reefs are responsible for maintaining a vast storehouse of genetic and biological diversity. Substantial ecosystem services are provided by coral reefs—such as habitat construction, nurseries, and spawning grounds for fish; nutrient cycling and carbon and nitrogen fixing in nutrient - poor environments; and wave buffering and sediment stabilization.

The total economic value of reefs and associated services is estimated as hundreds of millions of dollars. Yet all coral reefs are dependent on a single key biotic interaction: symbiosis with algae.

Biodiversity affects key ecosystem processes in terrestrial ecosystems such as biomass production , nutrient and water cycling, and soil formation and retention—all of which govern and ensure supporting services high certainty. The relationship between biodiversity and supporting ecosystem services depends on composition, relative abundance, functional diversity , and, to a lesser extent, taxonomic diversity.

If multiple dimensions of biodiversity are driven to very low levels, especially trophic or functional diversity within an ecosystem, both the level and stability for instance, biological insurance of supportive services may decrease CF2 , C Region-to-region differences in ecosystem processes are driven mostly by climate, resource availability, disturbance, and other extrinsic factors and not by differences in species richness high certainty.

In natural ecosystems , the effects of abiotic and land use drivers on ecosystem services are usually more important than changes in species richness. Plant productivity , nutrient retention, and resistance to invasions and diseases sometimes grow with increasing species numbers in experimental ecosystems that have been reduced to low levels of biodiversity.

In natural ecosystems, however, these direct effects of increasing species richness are usually overridden by the effects of climate, resource availability, or disturbance regime C Even if losses of biodiversity have small short-term impacts on ecosystem function, such losses may reduce the capacity of ecosystems for adjustment to changing environments that is, ecosystem stability or resilience, resistance, and biological insurance high certainty.

The loss of multiple components of biodiversity, especially functional and ecosystem diversity at the landscape level, will lead to lowered ecosystem stability high certainty. Although the stability of an ecosystem depends to a large extent on the characteristics of the dominant species such as life span, growth rate, or regeneration strategy , less abundant species also contribute to the long-term preservation of ecosystem functioning.

As tragically illustrated by social conflict and humanitarian crisis over droughts, floods, and other ecosystem collapses, stability of ecosystems underpins most components of human well-being , including health , security, satisfactory social relations, and freedom of choice and action C6 ; see also Key Question 2. The preservation of the number, types, and relative abundance of resident species can enhance invasion resistance in a wide range of natural and semi-natural ecosystems medium certainty.

Although areas of high species richness such as biodiversity hot spots are more susceptible to invasion than species- poor areas, within a given habitat the preservation of its natural species pool appears to increase its resistance to invasions by non-native species.

This is also supported by evidence from several marine ecosystems, where decreases in the richness of native taxa were correlated with increased survival and percent cover of invading species C

Estimates of the magnitudes of major marine mass extinctions in earth history

Biodiversity is the foundation of ecosystem services to which human well-being is intimately linked. No feature of Earth is more complex, dynamic, and varied than the layer of living organisms that occupy its surfaces and its seas, and no feature is experiencing more dramatic change at the hands of humans than this extraordinary, singularly unique feature of Earth. This layer of living organisms—the biosphere—through the collective metabolic activities of its innumerable plants, animals, and microbes physically and chemically unites the atmosphere, geosphere, and hydrosphere into one environmental system within which millions of species , including humans, have thrived. It follows that large-scale human influences over this biota have tremendous impacts on human well-being. It also follows that the nature of these impacts, good or bad, is within the power of humans to influence CF2. Defining Biodiversity.


PDF · Earth's History. Jens Boenigk, Sabina Wodniok, Edvard Glücksman. Pages PDF · Distribution of present-day biodiversity. Jens Boenigk, Sabina.


Biodiversity and Earth History

To ensure the site displays correctly, please use a more modern browser, like Firefox or Google Chrome. Biodiversity is the sum of all the different species of animals, plants, fungi and microbial organisms living on Earth and the variety of habitats in which they live. Scientists estimate that more than 10 million different species inhabit Earth. Biodiversity underlies everything from food production to medical research. Humans use at least 40, species of plants and animals on a daily basis.

Thank you for visiting nature. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser or turn off compatibility mode in Internet Explorer. In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Timeline of the evolutionary history of life

Author contributions: S.

It seems that you're in Germany. We have a dedicated site for Germany. Its innovative design provides a seamless learning experience, clarifying major concepts step by step with detailed textual explanations complemented by detailed figures, diagrams and vibrant pictures.

Biodiversity today is huge, and it has a long history. Identifying rules for the heterogeneity of modern biodiversity—the high to low species richness of different clades—has been hard. There are measurable biodiversity differences between land and sea and between the tropics and temperate-polar regions.

This timeline of the evolutionary history of life represents the current scientific theory outlining the major events during the development of life on planet Earth. In biology , evolution is any change across successive generations in the heritable characteristics of biological populations. Evolutionary processes give rise to diversity at every level of biological organization , from kingdoms to species , and individual organisms and molecules , such as DNA and proteins.

1 Response
  1. Catherine L.

    relationship between Earth's geological history and the biodiversity of life. DRM-free; Included format: PDF; ebooks can be used on all reading devices.

Leave a Reply